
Revista Informatica Economică nr.3(47)/2008

104

A New Life for SQL SELECT Statement

Bogdan SAHLEAN, Niculae DAVIDESCU
Department of Management Information Systems

Academy of Economic Studies, Bucharest, România
bsahlean@ase.ro, nicolae_davidescu@yahoo.com

 An important percent from information systems use databases and in the majority of
cases for developing such systems are used object oriented programming languages. From
this point of view a key aspect is represented by the database querying features. The authors
has observed a major gap between querying features of persistence mechanisms and the
requirements for developing true object oriented software applications. Consequently,
authors propose a new syntax for SQL SELECT statement, syntax that will allow to client
applications to retrieve objects graphs.
Keywords: object-oriented database, query, objects graph, SQL, syntax.

ntroduction
An important percent from software mar-

ket is represented by software for enterprise.
This software category can include software
for manufacturing, warehouse management,
supply chain, accounting, financials, human
resources, decision support system and
projects management. A study made by IDCi
named “Worldwide ERP Applications Mar-
ket 2006–2010 Forecast and 2005 Vendor
Shares” shows “The ERP applications market
grew 6.5% to $28.3 billion in 2005”. Also,
Albert Pang, Enterprise Applications
Research Director at IDC, considers “SMB
growth is expected to be phenomenal in the
coming years as many of these ERP applica-
tions vendors released products that will be
easier to implement with more preconfigured
templates as well as hosting and Web servic-
es capabilities already built in”. Conclusion
is simple: enterprise software market is huge
and it will continue to develop.
The main aspects concerning enterprise soft-
ware development:
• Client – server architecture.
• For data storage are used databases (mostly
relational databases).
• For implementing such applications are
used in mostly cases object – oriented pro-
gramming languages: Java, C#, C++, VB.
TIOBE Programming Community Index for
March 2008 shows a growing importance of
object – oriented programming languages
with +3.0 % compared with March 2007. In

addition, this study shows that majority
(54.9%) of programming languages are ob-
ject – oriented.
Regarding to aspects presented, database
connectivity from the point of view of object
– oriented programming languages it is a
subject what needs a special attention.
In this context, the keyword is persistence.
The persistence must be defined in correla-
tion with two objects – oriented concepts:
class and object. Thus, Hans-Erik Eriksson
and Magnus Penker propose the next defini-
tion: “a persistent class in one whose objects
exist after the program that created it has ex-
isted […] Persistent class objects store them-
selves into a database, a file, or some other
permanent storage” (Eriksson & Penker et
al., 2003: 97). For Craig Larman, the persis-
tence represents “The enduring storage of the
state of an object.” (Larman, 2002: 618).
Unfortunately this author’s show only the
first aspect of persistence: object state saving
and ignore the second aspect that has the
same importance: state loading.
In other words, persistence represent in the
same measure:
• Object state saving (contents of its instance
attributes) using a permanent storage device.
This operation is represented by three servic-
es: C (create), U (update) and D (delete) from
CRUD expression.
• Object state loading. This operation is
represented by R (read) service.
At this moment, the most important solutions

I

Revista Informatica Economică nr.3(47)/2008

105

for persistence are:
• Object – oriented databases (OODBMSii).
• Object – relational databases (ORDBMSiii).
• Relational databases (RDBMSiv) plus ob-
ject – relational transformation (O/RMv me-
chanism).
Scott Ambler defines one of the most impor-
tant characteristic for persistence mechan-
isms, characteristic that is query capabilities:
“3. Multi-object actions. Because it is com-
mon to retrieve several objects at once, per-
haps for a report or as the result of a custo-
mized search, a robust persistence layer must
be able to support the retrieval of many ob-
jects simultaneously”(Ambler, 2005: 7).
Thus, for OODBMS, ORDBMS and

RDBMS+O/RM, R (read) service must have
two aspects:
• Defines possibility to restore object state
(object loading) and
• Defines possibility to query objects.
 From the point of view of query capabilities,
we believe that persistence solutions must of-
fer possibilities for query objects:
• To obtain a collection with objects of same
type.
• To obtain a graph of objects from different
classes (not one dimension table with records
like RDBMS) at once.
• To obtain derived objects.

Fig.1. Object graph example

1. Object query capabilities: present
SQL is a standard query language that has
been designed initial (SQL86 standard,
SQL/1) for relational databases.
SQL99 standard (also named SQL/3) was the
first step (in SQL standardization) from rela-
tion model to object model by includingvi
some elements from object model, elements
named object – relational extensions, for ex-
amples:
• Table hierarchies (SQL1999 supports only
single inheritance) and table types (tables de-
fined based on UDTvii).
• User-defined data types:
• New attributes and methods can be add-
ed.
• Methods can be overridden.

• Reference types (REF).
SELECT clause (from SQL SELECT state-
ment) syntax has changed to permit calling

methods using type.method(parameters) syn-
tax.
From the point of view of object - oriented
functionalities, SQL2003 and SQL2006 stan-
dards don’t have anything new. Nevertheless,
even if SQL1999 has introduced object – re-
lational extensions in SQL standard, SE-
LECT clause syntax has remained records
oriented without allowing to select a graph of
objects (like we have said in above chapter).
Other efforts have been made by ODMGviii to
develop a query language for object –
oriented databases. In 2001, has been
adopted ODMG 3 standard that is the last
standard. This standard proposes a new query
language named OQLix. Although OQL is
like SQL, OQL does not have the same suc-
cess.
Now, standardization effort is carried for-
ward by Object Database Technology Work-

Revista Informatica Economică nr.3(47)/2008

106

ing Group from OMGx that propose AOQLxi.
Unfortunately, nor OQL and nor AOQL does
not offer the possibility to obtain a graph of
objects from different classes.
LINQ is at the same time a Microsoft .Net
3.5 Framework component but also a possi-
ble extension for programming languages for
this platform but LINQ has been imple-
mented for the first time as a library for .NET
Framework 2. LINQ is a query language and
it offers the possibility of querying a vast
type of data sources including objects collec-
tion. LINQ syntax is derived from SQL SE-
LECT statement syntax and includes Select
operator to perform a projection. The biggest

LINQ disadvantage (disadvantage derived
from Select operator syntax) is the impossi-
bility to obtain a graph of objects (see above,
chapter 1).
Nevertheless, LINQ to SQL (not LINQ) per-
sistence manager offers a solution: the pro-
grammers can use „eager loading” option,
which is opposable to „lazy loading”.
An example: let us assume Invoice, Invoice-
Product (or invoice item) and Product
classes. If we want to load invoice object
with ID = 1 with all items and products ob-
jects from a SQL Server database we must
use load options:

Fig.2. LINQ to SQL example

We can see that solution for loading Invoice
object with all InvoiceProduct and Product
objects is not a LINQ (query) solution but a
LINQ to SQL (persistence manager) solu-
tion.

2. Object query capabilities: a proposal
In this paper, authors propose a new syntax
for SELECT and FROM clauses from SQL
SELECT statement to simplify objects graph
loading.
Proposed syntaxxii (this syntax does not want
to be a complete syntax; authors wish to
present only their contributions):
<select_statement> ::= <select_clause>

<from_clause>
<where_clause>
<groupby_clause>
<orderby_clause>

<select_clause> ::= SELECT OBJECTS
<classes_list>
<classes_list> ::= <class>
 [PATH <class> [ON <relation-
ships_list>]xiii] …

<class> ::= <persistent_class> | <derived
_class>
<persistent_class> ::= <class_identifier>
<derived_class> ::= <defined_derived_class>
| <undefined_derived_class>xiv
<defined_derived_class> ::= NEW
<class_identifier> ()
<undefined_derived_class> ::=
 NEW OBJECT <class_identifier> (<unde-
fined_derived_class_members>)
<from_clause> ::= FROM <classes_list>
<relationships_list> ::= <relationship>

[AND | OR <relationship> …]
<relationship> ::=
<class>.<collection_relationship>

| <class>.<class_relationship>
 | <sql_condition>
Arguments:
<select_statement>

Specifies type of the objects (classes) to
be returned by the query. Classes used in
SELECT clause can be persistent classes
(classes that have objects stored in data-
bases) and non-persistent derived classes

Revista Informatica Economică nr.3(47)/2008

107

(classes that do not have objects stored in
databases).

SELECT OBJECTS
Specifies that database engine must re-
turn objects, not plain records.

NEW <class_identifier> ()
Specifies that the database engine must
return non-persistent defined objects.
These objects must have a class defini-
tion in database (much more like views in
relational databases).

NEW OBJECT <class_identifier> (<un-
typed_derived_class_members>)

Specifies that the database engine must
return non-persistent undefined objects.

These objects do not have a class defini-
tion.

PATH
In SELECT clause, it is used to define
objects graph. In FROM clause, it is used
to define joins between source classes.

ON <relationships_list>
Specifies the condition on which the join
or objects graph selection is based.

<from_clause>
Specifies the class(es) from which to re-
trieve objects.

Examples: let us assume that we have this
classes:

Fig3. UML class diagram

The following examples loads an invoice ob-
ject (IDO = 1) and the correspondent client
object.
SELECT OBJECTS Client PATH Invoice
FROM Client PATH Invoice ON
Client.Invoices
WHERE Invoice.IDO = 1
Or
SELECT OBJECTS Client PATH Invoice
FROM Client PATH Invoice ON In-
voice.Client
WHERE Invoice.IDO = 1
Or
SELECT OBJECTS Client PATH Invoice
FROM Client PATH Invoice ON
Client.Invoices OR Invoice.Client
WHERE Invoice.IDO = 1
In the first solution, database engine is forced
to join objects from Client and Invoice

classes only using Client.Invoices relation-
ship (we exclude Invoice.Client relationship).
Because of that, it is possible that database
engine not to find the optimum execution
plan. This observation can be applied also for
the second solution. The last solution is the
most flexible and permits to obtain optimum
execution plan.
The following example loads an invoice ob-
ject (IDO = 1) with Client, all InvoiceProduct
and all Product objects.
SELECT OBJECTS Client

PATH Invoice
PATH InvoiceProduct
PATH Product

FROM Client
PATH Invoice ON Client.Invoices

OR Invoice.Client
PATH InvoiceProduct ON In-

Revista Informatica Economică nr.3(47)/2008

108

voice.InvoiceProducts
PATH Product ON InvoicePro-

duct.Product
WHERE Invoice.IDO = 1

In this case, an objects graph is loaded from
databasexv.
For an imaginary report created to print an
invoice with IDO = 1 we can use the next
query:
SELECT OBJECTS
NEW OBJECT InvoiceHeader /*One ob-
ject*/
(Series, Number, Date, Client.Name, Ad-
dress, Invoice.Total())
PATH
NEW OBJECT InvoiceItem /*Many ob-
jects*/
(Product.Name, Quantity, Price, InvoicePro-
duct.Value())
 FROM Client
PATH Invoice ON Client.Invoices OR In-
voice.Client
PATH InvoiceProduct ON In-
voice.InvoiceProducts
PATH Product ON InvoiceProduct.Product
WHERE Invoice.IDO = 1

Conclusions
We consider that this new syntax for SE-
LECT and FROM clauses permits to obtain a
graph of objects, thus simplifying develop-
ment of object-oriented software.

References
[1] Ambler, S.W. (2005) „The Design of a
Robust Persistence Layer For Relational Da-
tabases”, available on-line at
http://www.ambysoft.com/downloads/persist
enceLayer.pdf
[2] ANSI/ISO/IEC (2003) „SQL 2003 Stan-
dard”, available on-line at
http://www.wiscorp.com/sql_2003_standard.
zip
[3] Cattell, R., Douglas, K.B., Berler, M.,
Eastman, F., Jordan, D., Russell, C., Scha-
dow, O., Stanienda, T. & Velez, F. (2000)
The Object Data Management Standard:
ODMG 3.0, Morgan Kaufmann
[4] Eriksson, H.E., Penker, M., Lyons, B. &

Fado, D. (2003) UML 2 Toolkit, Wiley
[5] Gorman, M. (2001) „Is SQL Really A
Standard Anymore?”, available on-line at
http://www.tdan.com/view-articles/4923/
[6] Greene, R. (2006) „OODBMS
Architectures”, available on-line at
http://www.odbms.org/download/028.01%20
Gree-
ne%20OODBMS%20Architectures%20Sept
ember%202006.PDF
[7] Jeffrey, M.B. (2007) „Object-Relational
Mapping as a Persistence Mechanism for
Object-Oriented Applications”, available on-
line at
http://digitalcommons.macalester.edu/mathcs
_honors/6/
[8] Larman, C. (2004) Applying UML and
Patterns: An Introduction to Object-oriented
Analysis and Design and Unified Process,
Prentice Hall

[9] O2 Technology (1998) „ODMG OQL Us-
er Manual”, available on-line at
http://www.makumba.org/makumba/doc/oql-
manual.pdf
[10] Pialorsi, P., Russo, M. (2007) Introduc-
ing Microsoft LINQ, Microsoft Press
[11] Taylor, A.D. (1998) Object Technology,
Addison Wesley
[12] Tiobe Software (2008) „TIOBE Pro-
gramming Community Index for March
2008”, available on-line at
http://www.tiobe.com/index.php/content/pap
erinfo/tpci/index.html

i International Data Corporation
ii Object Database Management System
iii Object Relational Database Management System
iv Relational Database Management System
v Object / Relational Mapping
vi in SQL standard
vii User-Defined data Types
viii Object Data Management Group
ix Object Query Language
x Object Management Group
xi Abstract Object Query Language
xii BNF syntax
xiii Optional for SELECT clause. In this case, the rela-
tionships list in SELECT clause will be the same like
relationships list in FROM clause.
xiv Only in SELECT clause
xv See Figure 1

